Tuesday, November 6, 2012

Complex Analysis: Nowhere complex differentiable


PROBLEM
Show that $f(z)=Re(z)$ is nowhere complex differentiable.

PROOF
Let $h=\Delta x+i\Delta y$. Then $$\lim_{y\rightarrow 0}\frac{Re(z+h)-Re(z)}{h}=\lim_{y\rightarrow 0}\frac{Re(h)}{h}$
which is 1 if $h=\Delta x$ and 0 if $h=i\Delta y$. 

No comments:

Post a Comment